skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chong, Fred"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cloud-based quantum computers have become a re- ality with a number of companies allowing for cloud-based access to their machines with tens to more than 100 qubits. With easy access to quantum computers, quantum information processing will potentially revolutionize computation, and superconducting transmon-based quantum computers are among some of the more promising devices available. Cloud service providers today host a variety of these and other prototype quantum computers with highly diverse device properties, sizes, and performances. The variation that exists in today’s quantum computers, even among those of the same underlying hardware, motivate the study of how one device can be clearly differentiated and identified from the next. As a case study, this work focuses on the properties of 25 IBM superconducting, fixed-frequency transmon-based quantum computers that range in age from a few months to approximately 2.5 years. Through the analysis of current and historical quantum computer calibration data, this work uncovers key features within the machines, primarily frequency characteristics of transmon qubits, that can serve as a basis for a unique hardware fingerprint of each quantum computer. 
    more » « less
  2. We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the lg(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancilla - an exponential improvement over the best qubit-only equivalent. Our approach features a 70× improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability (fidelity) for our circuit, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path toward extending the frontier of quantum computers. 
    more » « less